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oxides induced by laser irradiation of 
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A strong non-stoichiometry of pure fcc Ce02 was induced by laser irradiation. The increase 
of laser power and/or energy density had a saturable effect on particle size growth. The 
possibility of Ce02 reduction to A-Ce203 by laser irradiation was demonstrated. Particles of 
stable Ce7012 phase were observed in all specimens irradiated at low laser-power densities. 
An epitaxial relationship between triclinic Ce11020 and cubic 0e12022 phases was found. The 
controversial C- Ce203 phase was detected at the limits of a b c c particle. An unknown b c c 
phase of acicular morphology, strongly related to  C-Ce203, was also registered. The dose 
dependence of Ce02 structural modifications obtained by laser irradiation as a function of 
laser energy density variation could be explained by a simple defect aggregation model 
implying lattice defects (oxygen vacancies and Ce 3+ ions). 

1. I n t r o d u c t i o n  
It is now well established that bulk cerium oxides are 
classified according to the oxidation state of the rare- 
earth element as: divalent, CeO (obtained under high 
pressures and temperatures); trivalent, Ce/O3; and 
tetravalent and intermediate oxides, CeOz and 
CeO2_ x [1, 2]. Two polymorphic compounds CezO 3 
are also reported: A-Ce20 3 (hexagonal, space group 
P3 ml) and the controversial C - C e 2 0 3  (cubic, space 
group T~ or Ia3) [1, 23. Structure and sintaxy of R203 
(R = rare-earth element) oxides and their relationship 
to the fluorite structure of RO 2 have been investigated 
in great detail [3, 4]. 

The intermediate oxides associated with various 
rare-earth elements (including cerium) can be de- 
scribed by the equivalent basic formulae: ROx 
(1.5 ~< x ~< 2) and R.O2n_ 2 (4 ~< n < oo ) where n = 4 
leads to R20  3 and n = oe to RO z [4-8].  The homo- 
logous series RnO2n_ 2 contains a great number of 
structures (especially hexagonal, monoclinic and tri- 
clinic) built on the fluorite-like lattice of RO/  com- 
pound,  which are due to various oxygen-vacancy 
rearrangement mechanisms [3, 4, 6]. 

Recent electron microscopy experiments d em o n -  
strated that the electron-beam irradiation induces un- 
expected crystallographic phase transitions in thin 
films of rare-earth oxides, very sensitive to experi- 
mental conditions (especially water vapour contam- 
ination) [9, 10]. On the other hand, it is well known 

that laser irradiation may induce or enhance such 
reactions as oxidation, nitridation, reduction, and 
doping of various materials [11-13]. High-pressure 
phases of SiO 2 [14] and a conversion of graphite into 
diamond [15] were obtained by pulsed laser fluxes 
impinging on the respective fine powders. More re- 
cently, a laser-induced calcite-aragonite transition 
[16] and a reduction of V205 by the appearance of 
V 4+ and V 3+ ions in the laser irradiated powders 
[17], were reported. 

This paper describes the various phase trans- 
formations induced by laser irradiation in pure stoi- 
chiometric CeO 2 powders. 

2. Experimental procedure 
Pure C e O  2 powders were prepared by precipitation of 
cerium nitrate of 99.991% purity using ammonia 
(Merck purity). After precipitation, the samples were 
washed for the complete removal of ammonium ni- 
trate, then filtered and dried at 110 ~ for 8 h. 

The irradiation of these specimens was done by a 
CO2 laser operating in continuous wave at power 
densities between 0.40 and 1 .30kWcm -z and for 
irradiation times between 7 and 50 s (Table I). 

The laser beam was focused to a spot of 39 mm 2 
area. The pressure of the gas mixture was 24 tort  
(He, 13 torr; H2, 9 torr; CO2, 2 torr). The thickness of 
CeO2 powder layers submitted to laser irradiation 
was 1.5 mm. 
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T A B L E I Experimental laser irradiation parameters 

Specimen Laser-beam Irradiation 
power density time (s) 
(kW cm - 2) 

Laser energy 
density (dose) a 
(kJ cm - 2) 

1 0.65 7 4.5 
2 0.90 7 6.3 
3 1.00 7 7.0 
4 1.00 14 t4.0 
5 1.15 7 8.0 
6 1.30 7 9.1 
7 0.40 20 8.0 
8 0.40 50 20.0 
9 0.40 100 40.0 

A conventional classification of laser irradiation doses as small 
( < 7 k J c m  2), mean (7 -14kJcm -2) and high ( > 1 4 k J c m  -2) 
doses, was used for easier discussion. 

The CeO 2 powders were studied by conventional 
transmission electron microscopy (CTEM) and selec- 
ted-area electron diffraction (SAED) in a TEMSCAN- 
100CX (Jeol) electron microscope, operating at 
200 kV, with special caution in order to eliminate any 
significant water-vapour contamination and temper- 
ature increase during all electronmicroscopical obser- 
vations. 

3. R e s u l t s  and  d i s c u s s i o n  
The pure CeO 2 powders consist of particles having a 
diameter of 20-40 nm and their structure, confirmed 
by SAED, belongs to the cubic polycrystalline C e O  2 

(ao = 0.541 nm), 
In general, laser irradiation induced a variable non- 

stoichiometry in pure fcc  CeO 2, depending on ir- 
radiation parameters. All the specimens contained, as 
major phase, an fcc  CeO2_x (where x is very small) 
phase, having an increased lattice parameter 
(ao = 0.553-0.555 nm) (Fig. 1). Particles o f fcc  CeO2_x 
structure (ao = 0.553 nm) were recently obtained by a 
vacuum annealing technique applied to CeO 2 [-18]. 

A saturable effect of particle-size growth, depending 
on the laser power and/or energy density increase, 
was observed (Fig. 2). For low and mean doses 
( < 9 kJ cm -2) only CeO2_~ polycrystalline diffraction 
rings were registered, but, for higher doses, large, 
thin, single-crystal CeO2_~ platelets occurred (Fig. 3). 
Sometimes, two or three single-crystal particles were 
joined after a prolonged irradiation (Fig. 4) due to 
enhanced local diffusion effects. 

The possibility of CeO 2 reduction to A-Ce20 3 by 
laser irradiation at low doses was demonstrated by 
SAED, because single-crystal A-CezO 3 particles of 
( i  2 0) and (74 2 3) zone axis were formed in areas also 
containing smaller particles of CeO 2_~ (Fig. 5). A large 
single-crystal A-Ce/O 3 platelet of the same (2~23) 
zone axis also occurred for mean doses (Fig. 6). 

A mechanism currently used for non-stoichiometric 
oxide studies, based on the clustering of the simplest 
defect, consisting of an oxygen vacancy and two triva- 
lent cations (virtually a Ce/O a nucleus) resulting by 
laser irradiation, could explain the A-CezO 3 appear- 
ance in a CeOa_ x lattice containing very high anion 
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Figure 1 Small f cc  CeO2_ x particles obtained by laser irradiation 
at mean doses (9 kJ cm-2): (a) TEM image, (b) SAED pattern. 

Figure 2 TEM images of CeO2_ ~ particles obtained by laser 
irradiation at: (a) low doses (4.5kJcm 2), (b) mean doses 
(14 kJcm-2).  



Figure 3 A very large single-crystal CeO2_ x particle which occurred 
in a specimen irradiated at high doses (40 kJ cm-  2): (a) TEM image, 
(b) ( 3 4 3 )  zone axis pattern. 

Figure 5 Single-crystal A-Ce203 particles found after laser-induced 
CeO2 reduction: (a) ( 1 2 0 )  zone axis pattern, (b) (7~ 2 3 )  zone axis 
pattern (see also CeO2_ ~ diffraction rings). 

Figure 4 Joined CeO2_ x particles after prolonged laser irradiation 
(0.4 kW cm-  2, 50 s). 

vacancy concentrations. Complete conversion of 
CeO2 to A-Ce203 was not possible, at least in the 
range of the irradiation parameters used. 

The formation of stable Ce7012 phase was detected 
only for low laser-power densities (0.4 kW cm-2) and 
for mean doses ( ~ 8 kJ cm-2) (Fig. 7) or high doses 
(40 kJcm -2) (Fig. 8), in the last case a particular 
orientation of high Miller indices being identified. 

Although compounds of strange non-stoichiometry 
of the type formed in oxidized rare-earth thin films 
irradiated by energetic electron beams [9, 10, 19, 20] 

Figure 6 Large single-crystal A-Ce203 platelet appearing in laser- 
irradiated CeO2_ x at mean doses: (a) TEM image, (b) (2~ 23 )  zone 
axis pattern. 
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Figure 7 Particle of Ce7012 phase obtained by laser irradiation at 
mean doses: (a) TEM image, (b) (2 t 7) zone axis pattern. 

3F3oc• T = triclinic 
C = c . v . c .  

Figure 8 Another Ce7Ol1 particle observed in a specimen irradi- 
ated at a high dose (40 kJ cm- 2): (a) TEM image, (b) (8 3 14) zone 
axis pattern. 

were not detected, some members of the CenO2n_ 2 

series of greater n values were identified in the laser- 
irradiated specimens for low power densities and short 
irradiation times. Thus, an epitaxial relationship 
between triclinic Ce1~O2o and cubic Ce12022 phases, 
after laser-beam irradiation of CeO 2 powders, was 
found (Fig. 9). The orientation relationships between 
the two phases were 

(1 1 O) C e l l 0 2 o  1] (1 ] O) Ce12022 

and 

[1 i43  Ce1~02o ]1 [11 1] Ce12022 

Figure 9 The occurrence of triclinic Ce1~O2o phase from cubic 
Ce12022 particles after laser-beam irradiation: (a) TEM image, 
(b) SAED pattern, (c) interpretation of SAED pattern (orientation 
relationships: (110) Ce1102o II (110) Ce12022 and [114] 
Ce11020 1[ [111] Ce12022 ). 

The controversial C-Ce20  3 (Ia3) phase, having 
a s =  1.116nm and observed in some experiments 
F21, 22], was identified in our investigations as a thick 
quasiepitaxial layer grown at the limits of some pris- 
matic particles with an unusual b cc  structure but 
having a lattice parameter  ao = 0.554 nm (Fig. 10). By 
tilting of the (1 3 5) zone axis SAED pattern, the new 
additional spots can be interpreted as belonging to 
C-Ce20  3 phase having a doubled lattice parameter  
(a c ~- 2%). A dark-field image (Fig. 10c) taken with the 
(6 3 5)c spot (Fig. 10d) confirmed the C-Ce20  3 phase 
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Figure 10 (a) TEM image of a prismatic particle (b c c structure: a o = 0.554 nm), (b) the associated (1 3 5) zone axis pattern, (c) tilted SAED 
pattern with additional spots interpreted as C-Ce203 phase (ac ~ 2ao), (d) dark-field image taken with the (6 3 5) c spot. 

occurrence. It is well known that the (1 3 5) plane is the 
structural feature relating the homologous series in 
binary rare-earth oxides [4, 6]. The odd members of 
the Ce,Oz,_2 series have {1 3 5} planes that contain all 
the 6-coordinated rare-earth atoms with two oxygen 
atoms missing from each coordination cube along 
[1 1 1]. For even members, the defect feature is a 
corrugation of {1 3 5} planes which result from twin- 
ning at the unit cell level. In our case, the corrugations 
are modified and the unit cell parameters are doubled, 
according to previously suggested structural princi- 
ples that relate the unit cells of the members of the 
homologous series [5]. 

Another unknown b c c  phase (ao = 1.170rim) of 
needle-like morphology (Fig. 11), strongly related to 
C-Ce~O 3, was registered only in a specimen irradiated 
at i kW cm-2 for 7 s. The real structure of this last 
phase seemed to be governed by a more severe selec- 
tion rule than the space group T~ (Ia3) because the 
observed lines correspond only for h + k + l = 4n 
(Table II), excepting the very intense (2 2 2) line of the 
fluorite structure. This b c c phase should be an inter- 
mediate CeOz-x phase having x > 0.5 and an increased 
lattice parameter compared to C-C%O3 phase due to 
a different anion vacancy arrangement at the unit cell 
level. 

A qualitative model could explain the observed 
structural modifications in f cc  CeO2 subjected to 
laser irradiation. At small irradiation doses, the high 
concentration of induced oxygen vacancies will be 

Figure I1 Needle-like particles of an unknown phase, related to 
C-Ce20 ~, found after laser irradiation (7 kJ cm-2): (a) TEM image, 
(b) SAED polycrystalline pattern. 

accommodated by the open crystal structure contain- 
ing multiple occupying positions for defect clusters. 
Because the nearest-neighbour cation sites surround- 
ing the majority of Ce 3 § ions will be occupied by 
Ce ~+ lattice cations, the maximum extent of defect 
aggregation will be the formation of simple clusters 
involving single vacancies bound to the isolated Ce 3 + 
cations, Therefore, the A-Ce203 occurrence could be 
explained by the clustering of one vacancy and two 
trivalent cations. 
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T A B L E  II Indexing of an unknown phase related to C-Ce203 
phase (T 7 or Ia3) 

2R (ram) dn k l h k I I ~ .  I ~ pF2d 2~ leale b 

12.5 3.39 2 2 2 vs 100 100 
20.6 2.06 0 4 4 s 66 33 
25.4 1.65 4 4 4  m 19 8 
35.5 1.19 8 0 4  w 37 12 
41.5 1.02 0 8 8 w 13 6 

a p, permutat ion factor; F, structure factor. 
b Corrected values (taking into account the angular  variation of 
scattering atomic factors). 

At mean doses, the increased number of lattice 
defects (oxygen vacancies and Ce 3 + ions) will lead to 
an increase of anion mobility although low mobilities 
should be expected in the cation sublattice. Thus, a 
substantial ordering of interacting defects or defect 
complexes will  occur, resulting in the subphase 
CenO2n_ 2 (n > 6) formation [23]. In the laser-irradi- 
ated CeO 2 powders, we have already detected inter- 
mediate oxide phases corresponding to n = 7, 11 
and 12. 

For high irradiation doses, it might be expected that 
an increasing number of clusters of two, three or more 
Ce 3 + ions would be found, thus generating a random 
cluster distribution in the CeO2_~ lattice. These triva- 
lent ions provide deeper traps for the vacancies, res- 
ulting in a reduction of oxygen vacancy mobility. The 
vacancy mobility decrease could be connected to the 
more stable phase occurrence. Large Ce7012 particles 
were currently observed in CeO 2 specimens subjected 
to laser irradiation at high doses. 

Therefore, the occurrence of some well-known 
intermediate oxides after laser irradiation appears as 
due to the high sensitivity of the structural ordering to 
any small variation of oxygen vacancy concentration 
in the fluorite CeO 2 lattice. 

The formation of unusual phases could be tent- 
atively explained as a consequence of acoustic elastic 
waves generation by laser irradiation, The electron- 
beam impact has been already suggested by 
Gasgnier's group as being the source of high-pressure 
shock waves which could induce the observed 
paradoxical crystallographic of some rare-earth inter- 
mediate oxides [-9, 10, 20, 24]. Laser or electron ir- 
radiation lead to phase transition processes differing 
from the normal thermal annealing case, demon- 
strated in the case of the Jahn-Teller effect [25]. At 
room temperature, the induced transverse acoustic 
phonons result in an average displacement of the 
atoms from their equilibrium positions which could be 
approximately as large as the bond length [26]. A 
recent lattice dynamics calculation for high Tc super- 
conducting oxides [27] has suggested that a coupling 
of acoustic waves to low-frequency oxygen modes 
with large amplitude of vibrations could induce phase 
transitions. 

4. Conclusions 
1. Laser irradiation induces a strong non-stoi- 

chiometry of pure stoichiometric fc c CeO2. All the 

samples contain an fc c CeO2_~ having an increased 
lattice parameter (ao = 0.553-0.555nm) as major 
phase. 

2. The laser-power density and/or energy-dose in- 
crease have a saturable effect on particle size growth in 
the CeOz_ ~ oxide powders. 

3. Although the known CeO2 reduction procedures 
are generally difficult, a new easier possibility of CeO2 
reduction to A-Ce20 3 by laser irradiation was dem- 
onstrated. 

4. Single-crystal particles of very stable Ce7012 
phase were found in all specimens laser irradiated at 
0.4 kW cm -z but none were detected at high power 
densities. 

5. Although non-equilibrium compounds of 
strange non-stoichiometry, previously reported for 
rare-earth oxide thin films irradiated by electron 
beams, had not been observed, some unusual phases 
were also detected. An epitaxial relationship between 
triclinic Ce110/o and cubic Ce12012 phases was 
found. An unknown needle-like b c c phase and the 
controversial C-CezO3 phase were also registered. 
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